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MORE ON CUMULATIVE SEARCH EVASION GAMES

1. INTRODUCTION

Eagle and Washburn (1990) introduced Cumulative Search Evasion '
-Games (CSEGs) as two-person zero sum games where the cumulative payoff
overT iimelperioc'is is Zr_lA(x,,y,,t), x; and y; being the locations of searcher
and evader, respectively, at time t. A path for the searcher is a éequence’
x1, .., xT where x1€ So and x4,1 € S(x.t) for t 21, the sets Sp and SI(O,;) being
given, and similarly for the evader exce'pf y1 € Egana y; € E(y:, t).” All of these
sets are nonempty subsets of Cs a given“finite set of “cells.” A mixed strategy
for the searcher is a probability distribution over paths. Let p(x,t) be the
correéponding marginal d;xstributiovn, the probability that the searcher
occupies cell x at timé t, and 1ét g (y,t) be defined similarly for the evader.
Then the expected payoff is )’ ;r-} Y.y yA(x,y, t);ly(x,t)q(y,t') . This observation,
together with the observation that the optimization problem for one plaver
when the marginal distribution of the other is given is a shortest or loagest-
path problem, formed the basis of tvo solution niethqu for sol'vin.g CSEGs:
+ Fictitious I.’lvay and Linear 'Proéram‘ming (LP). Only the LP method will be
"discussed here. . |

One might hope to formulate an LP for the searcher in whic‘htl}'e only .
'variables needed to describe the searcher’s mixed str'ategy are .p(xi;t), since

those suffice to exp‘ress the expecfed payoff. However, Eagle and Washburn

. found it necessary to introduce the joint probabilities
- Avaiabiity Codes
| Avail anc for

Dist | Special




u(i,j, t) = probability that the searcher occupies cell i at time
t-1, and cell j at time ¢,

. together with network consiraints to the effect that probabilities ”ﬂéw-ing”

into and out of a cell must balance. The necessity t> include these joint
probabilities is disappointing, sinée-in large problems there are many more
u-variables than p-variables. One of the goals cf this paper is to show that the
u-variables can be ayoided in certain one-dimensional CSEGs. This is the
subject of the next section. Using only the p;variables makes it possible to
solve larger CSEGs than would otherwise be possible. |
The other goal of this paper is to show that the payoff at time ¢ in a CSEG,
cén be generalized to A(X-1, X4 Yoot Yoo B) i .the u-variables are retained. The
required Ytheorems and LP formulation, together with an example illustrating

the value of the generalization, is the subject of Section 3.

2. THE ONE:DIMENSIONAL CSEG -

In this section the positions of both parties must at all times be in the set of
cellsC={1,..,N}, N 21, with transitions from i to j'at t being permissible if i €
C.jeCand |i-j| s1. These rules define E(*,*) and S(,*). The payoff.
function A(j, j, t) is unrestricted. | | '

Sﬁp;."bse for the moment that the searcher’s marginal pfobabilitiés pli, t)
were known to the evader, in which case any evader path that visits cell j at
time ¢ must pay a penalty ("'penalty" because tl"ue evader is the minimizer) of |
Z pi,HA(i,j,1). Let g(j, t) be the minimum possible cumulatwe payoff from .

C .
txme tonwards, given that the evader occupxes cell jat time £. Then, taking

- g(e, T+1)=0 for convenience, g(®, *) must satxsfy the recursion




g(it) = ¥ pli.hA(Lj1) + min g(kt+1);j €C, 1St ST (1)
icc keE(jt)

Since the evader must be in Eg at time 1, the minimum possible payoff is

!Iel}isng( j.1}, which the pursuer wants tc maximize. This leads to the following
JEEQ

Linear Program:
maximize gy
subject to ' - go-8(y.1)s0; jek,
8Git) - ¥ pli,HA(i,j,1) - gk,t+1)<0;j €C,1<t KT,k €E(j, 1),
ieC . '
and some feasibility constraints on p(e, °).
Eagle and Washburn employed the u- variables in expressing the
feaéibility constraints on p(*, ¢ ). The object here is to fird a way of
expressing those constraints without defining any new variables. First we
prove |
Theorem 1. In the one-dimensional CSEG, p(*, *) is feasible if the following

feasibility constraints hold:

Z pi,1)=1
i€So . o
. k kel : .
(lefty Y Pt +Y - Yrins - ;1Sk<N;1SHCT
o . i=1 i1’ T
: o N » N ) . C
(righty - o Y.pit+l)- Y pi,) S0 1Sk SCN;1SHLT
' . ik ¢l i=k '
N . -
Y pit) =1 J1CEST
i=1 : S
pli.H20  1SiSNASHST
3




Proof: Assume that the feasibility constraints hold, and consider the
pfopositi'on Pr that there exists a feasible stochasfic‘ searcher motion process
for which the marginal distributions are p(e,t); 1<t<T. Py ?s clearly true,
since tﬁe feasibility constraints in that case require only tnat the searcher begin
in Sp. If it can be shown that Pr implies Pr,1, the theorem will be established
by induction. Toward this end, let cells 1, ..., N at time T be “sources” with
probability p; = p(i, T) each, and let the same ceils at time T + 1 be “sinks” with
probability g; = p(i,"I? + 1)“ each. To establish Pr,;, it is sufficient to show tt;a't
there exist N 2 joint occupaﬁcy probabilities u;j such that
Zil\ili‘if =p;, Z;qu,-j =4q;, and u;;= 0 unless j € E(j, t), the latter constraint
reflecting the requirement that transitions beyond neighboring cells are not
allowed. In other words, it must be possible to “ship” a unit of probability
fr'om sources to Isinks, with u;,: being the amount shipped‘from souice i to sink
J The “left biased” method (LB) below is one constructive method for
accomplishing this. LB proceeds through th.e sources in increasing order,
shipping proﬁability to the lowest numbered sink that is not yet satisfied until
the source bei'ng considered is exhausted, then proceeding to the next source
until all N sources.have beex'x'considered. If LB makes u;; > 0 for some i and
some' ji- 1 (alternatively j > i + 1), we say that a left (al’tematively right)
difficulty occu.'rs‘at node i. To complete the proof it is required to show that
no difficulties of either type can occur as long as the feasibility constraints
hold. | |
‘Suppose that no difficulties occur in lcells 1, . k= 1, but that a left
difficulty occurs in cell k (necessarily k 2 3, since left difficulties are not

.Ia'ossibie in cells 1 and 2). Since all of the probability in sources 1, ..., k-1 can




be shipped to sinks 1, ..., k - 2 without satisfying one of those sinks (otherwise
the left difficulty could not occur in cell k), necessarily

k-2 .
Y qi- Zm>0

i=1 j=1

But this inequality is in the opposite 'sen'se of one of the left constraints, so a
left difficqlt); cannot occur in cell k. Suppos: instead that there is a right
difficulty. A right difficulty occurs for the first time in cell k only if there is
more probability in sources 1, ..., k than is required to satisfy sinks 1, ..., k + 1

SO

k+1
Y g < Zp,
i=1" i=l

Since (p;) and (g;) are both constrained tc be probability distributions, it
follows that -
N N
Y - Ym0
i=k+2  i=k+1
But this contfadicts one of the right constraihts, so right difficulties cannot
occur either. o
" Since nexther right nor left d:ffmulnes can occur, LB wdl discover a
feasible set of joint probabxlmes u;. This completes the proof. r_j
Obvmusly there is a symmetrically defined “right-biased method” that
will discover a poss:bly different set of feasxble joint probabxht:e< Infact
there are many such methods and many feasible sets of joint probabilities.

Formulating the searcher’s linear program without reference to these joint




probabilities has the advantage of eliminating many alternate optima, in
addition to the computational savings achieved by eliminating variables. The
revised formulation, with dual variables shown in braces, is program LP:

maximizegg

subject ta 80 - g(].l) <0 o ;j€Ey {40, 1)}

s(j.t) - zp(z HA(i,],t) - g(l t+1)S0  ;je€C1$t< T,k €E(j {o(j.k,t+1}

i=1

N
(. T) - ¥ p, THA(, J, DSO ;j€C {a(j, T}
i=1
Y, Ai D= i}
i€So : ,
"k k+1 ‘ ’ : -
Y plt+- Y pli,nso ;1Sk<N,1t<T {i(k,0} -
i=1 il , .
N N
Y plit+1) - Y plih <0 - ;1SKk<N,1StLT {rk,b)
imk+1 x-k .
Zp(t f = C 1K ST b}
i=1 o

.I't has been established so far that the value, v, of the CSEG is at least go.
The possibility still remains that v > 8o- To establish v == gq, the dual of Lf will
be shown fo be a Linear Program whosg objective fur;ctibn is an ui)pe't bound
on the gavm:e value. Consideration- of the dual will alsé pfovide
mterpretatxons of the dual variables in LP ‘the notation used above anticipates |
that q@.1) can be mterpreted as “he probability descnbed earher, for example,
~but that fact has yet to be established formally.

The dual of LP involves the sums Zk (k,t) - L(z t) and
Zk 1x‘(k t) » R{i,t). For compactness we will write L(e,*) and R(- *) below,

even though *he sums are actually meant, and we vill also use the convention




that L(0,t) w L(1,t) and R(N +1,¢) = R(N,b). Note that, since If¢,®) and r(e,*) are
;lohnegative,. L(e,t)and k{e,t) are nonii iressing and nondecreasing ceu

functions, respectively, for 1 S ¢ < T. Finally, the set E*(i,f) consists of those

| cellé from which the evader at time ¢-1 can transition to cell iat time t. The

dual of LP is DLP: |
. .

minimize Z h,

t=1

. | _
subjectta by - ¥ A(i,},1) v(j.k,2) - L(i-1,1) - RE+1,1)20
1 j ) (

=1 keE(j1)
, ,'i €50 {p(l,l)}
N ¢ .
b Y AGj) Yo(ikt+)+Lit-D+REEN-LE 10 -RG+1,H 20
j=t . keE(j.1) ' _ ‘
;i€C1<HELKT {p(i,n}
N ' ' r .
-¥ A7, T)q(j,T) + L(i, T - D +RGE,T- 1) 20 ;ieC . {nin}
i=1 IR .
Yo(i.jt+1) - Yuik,it=0 | i€C1Kt KT {3(i,)}
JEE(i.1 k€E*(i,t) -
geT) - Yo(jkT)=0 kec gk, T}
JEES(k.T) : - _ :
wjk2)-q(,h =0 - €€ g}
keE(j1). i : ' ,
- Yaip=1 o i {80} -
- i€Ep : ' -

v(i_.j,i') 20; li,H20; r(H20; q(i,)20; 9(j.T) 20




The last four sets of constrainis in DLP have tf\_e effect of requiring that -
gie,e) be'a, feasible marginal distributicn for the evader, with v(e,e,¢) being
the joiht occupancy probabilities. The first three sets of constraints can be
simpllifie'd somewhat by deiining y(i, t) = ZihilA(i, j,t)z KeE(j t)v( j.k,t+1), so
that y(i,t) is the average paycff to the searcher at time ¢ if he occupies cell i at
that» tixhe, and also L(e,T)= R(O,T')-'= 0. In that case the first three sets of

constraints can be. summarized as

By -y(i,D - LG -11) -RGE+1,0) 20 ;iesy o)
By -y * LGt + )+ Rt -1 -Li- L - RE+1,H20 ;i €C,1<tST (3)

The 'cjuestion now is, “Do (2) and (3) guarantee that the accumulated payoff is
at inost Z;r_lh, for any feasible searcher path?” Theorem 2 answers this

question in the affirmative.

Theorem 2: Suppose that (2) and (3) hold, with L(e,t) and R(e,t) being

noni'ncreasing and nondecreasing functions, respectively, on {1, ..., N}, and

L(»,T) = R(O,T) =0. Letxy,.. x7be ahy sequence of integers sixch that xy €5y, -
1 $ SN foristsT,and |x,- x| S1fort>1. Then Zﬁly(x,,t) < Zﬁih,

Proofﬁ Substitute x, for i in the tth inequality of (2)-(3), and sum all T

'-inequalitiés. The resultis

T. T T : o ' o : .
Yo -3 y(a.)+Y [Llxgt -1 - Lixp.y - Lt - D] +[R(xpt - 1) - R(xpg + 1 - D] 20 :
A @

tel = tel t=2




Since L(e,t-1) is nonincreasing and since x; 2 x~1, L(xpt-1) = L(x1-1,4-1) < O for
t=2,..,T. Similarly R(xy, t-1) - R(xs-1+1,t-1) S 0. Therefore the third sum in
(4) is nonpositive, and the theorem follows directly. . O

Theorem 2 implies that the optimized gy from LP is the value of the
CSEG, as well as providing probabilistic interpretations for the dual variables
G(i, 1), v(jk,t+1), and q(i, T). Thus the value of the game and both optimal
strategieé can be obtained from LP. |

Bothwell (1990) reports on some experiments in using LP as above (as well
as other mevthods) to solve 5 one-dimensional CSEG wnere A(j, j, t) indicates
‘whether i = j, so that the payoff is “total number of coincidences,” with 5o - {1}
and Eg={N}. He di’scovered that the new formulation permitte.d solutions in
about cne fourth of the time of the Eagle-anshburn method, and was thus
able to solve games up to N = 30. His Figures 1-6 describe the solution for
N =20 and T = 31. The searcher’s strategy p(e,*) is shown digitally in Figure 1
and graphicaily'in Figure 2. Figure 3 is a blowup for t 2 21, showing that
p(*,31) is finally uniform, that p(1,t) goesbthréugh a maximum, and that p(20,f)
.g‘oes through a minimum. The latter two features were unanticipated, but
seem to be regular features of the solution for large N. Basically the searcher
“rushes” from cell 1 to cell 2b, except that he has a small probability of
. reversing his direction after time 10. The cumulative effect of all the small
prbbébilitieé bis to make p(*,f) u. form for t = 31. . |

Figures 4-6 show the e\}'adér’s m’argin.al probabilities g(e,*). Basi?ally the
evadelr stays in cell 20, except thaf there is at'all times (even t = 1) asmall

probability of making a break for the other side; one is reminded of Auger’s
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(1991) “Wait-and-run” strategies. By time 31 the evader’s position, like the

‘ séarchef's, is unifbrm over all 20 cells. It vfollows (see Eagle and Washburn)

that the game where T > 31 starts the same way as when T = 31, but that it is -

optimal for each play’er to remain stationary for 31 S¢<T.

3. GENERALIZED PAYOFF
In this section it will be shown that the payoff in a CSEG can be

generalxzed to Z ‘_‘IA(x,.l,x,,y,.l,_ y;.1), with xg and yo specified. Solution of

- such games will_requite retention cf the joint occupancy probabilities; so the
’cdntr‘ibution of this section is toward modeling flexibility, rather than
computational efficiency. |

Let So = {xo}, Eo = {yo}, and let S(*,*) and E(e,¢) be as defined in Section 1
except that S(x(,0) and E(yo,0) are now (rather thén So and Eo) the sets of cells

feasible for searcher and evader at Time 1. Sy and En are now the (singletbn)

sets of cells feusible at time 0. For t21letS; be the set of cells feasible for the

s-earéher at time t. Formally, S, = {j: thé-te exists iin S;.l‘ such that jisin
S(i, t;l)} Define E; similarly. Also, for't> 1 and i € S,,"let 5*(j, t) be the set of
cells from which jis feasxble, formally S*(j, t) ={&je S {, t-1)}, and defme

E*(e,9) sxmxlariy Finally, let u{»,*,¢) be as defined as in Sectxon 1, so that

fm,n, by = ZA(: j.m,n, t)u(z,],t), .1.s.ts T (5

IES‘
;6(: hl) ‘

is the'p'enalty at time.t to the evader if he occupies celt m at time -1 and cell n |

' at time t, and zr,lf(w-l,y,,t). is the t'ota_l'ex'pected penalty, conditioned on

the evader’s track.




Consider first the evader’s problem of minimizing the total penalty when
u(e,e,*) is known. A dynamic programming recursion is still feasible. Let
h(m ,t) be the minimum total penalty over periods ¢, ..., T if the evader

occupies cell m at time t-1. Then h(m,t) satisfies the recursion

h(m,ty=  min {f(mn,)+h(nt+1}; 1<t<T,meE,, (6)
neE(my - 1) _ .

with /i(¢,T+1) = 0. The minimized total penalty over all T periods is then

hl(yo,l), which quantit)?'the searcher wants to.maximize. Since (6) can be

written as linear constraints, maximizing h(yo,1) is a lincar program. The

program, with dual variables named in braces as usual, is LP1:

maximizeh(yg,1)

~ subject to

-fim,n,t) - h(n,t + D+ h(m,) SO ;1$t ST, m €E; ,n€Em,t-1). {v(m,n,b)

Y u(xp, i) =1 ;o | | {g(xy,1}
j€5 o , '
- Yu(iif)+ Yu(ikt+l)=0;15t<T,ies; g, t+1}
jes (i) . keS(ib) - ' .
(i, 20  ASEST,i €S .j €St 1)

J- ™M f(m, n, t) has been written _for comj:a’cthessJ even thc;u'gh the expression

on. ‘.. at-hand side of (5) is meant, and it should be ‘unde;stpod that the |
term h(n, t+1) is missing when ¢ = T. The second and third sets of constraints
are the feasibility cbnsfr#ints of Eagle and Washburn; as long as u(e,e,e)
satisfies those éonstraihts, thefe exists a feasible mixed strategy for the searcher

with u(O,O,O)'as the joint occupancy pr'obabilities. Thus any feasible solution

15




to LP1 corresponds to a lower bound h (yp,1) on the value of the. CSEG, and
consequently the same thing can be said of the maximized value.

LP1 and its dual DLP1 possess a:plea_sing symmetry that was absent in
Section 2. DLP1 is (the g(jt+1) term is missing when ¢ = T)

minimizeg(xp,1)
subject to

. XA(i,j.,m,n,t)v(m,n, f) - g(j,t‘4‘~1) +2(i,1) 20
meE, . q '

‘ne€E(m,t-1)
1St ST,i€5,.1,j €86t -1 {u(i,j,0)
Y v(yo.n.1) =1 | | {hyo. 0} |
.n€£1 . . .
- Yonmbp+ Y umk,t+1) =0 ;15t<T,m €E, {h(m,t'.ri)}‘
neE*(mp) k€E(m 2) ,
v(m,n,b 2.0 . ;1$tST,me€F, neE(m,t-1).

Any function v(e,e,®) that meets the sécond and third sets of constraints of
DLP1 can be interpreted as the joint occupancy probabilities of a feasible
mixed strategy for the evader. That being the case, the first set of constraints

assures that a scarcher in cell i at time t-1 cannot obtain a payoff larger than

- glit) over periods ¢, ..., T. In p'articular,"g(xo,l) is an uppér bguﬂnd on the

cumulative payoff over all T periods. But the optimizéd values of g(xo,1) and

h(yo,1) must be equal because LP1 and DLP1 are duals, so either h'umbe: is the

value of the CSEG.. Furthermore the evader’s optimal occupancy
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probabilities can be obtained as the dual variables associated with the first set

of constraints in LP1; it is actually not necessary to solve DLP1.

Example: The revised one-dimensional CSEG

In the standard one-dimensional CSEG described earlier, it is possible
‘that the two tracks xy, ..., x7 and yj, ..., yr may cross each other without ever
being exactly coincident, in which case the searcher’s score wili be 0 becaﬁse
fhe dbjective function simply counts coincidences. To guard against this )
possibility, the searcher’s leading edge as he moves from 1 to N is spreadvinto
two approximately equal parts, thus making a barrier so wide that the evader
cannot “jump over it” (see Figure 2). This annoying artifact can be eliminated
by redefining the payoff so that the searcher scores a point whenever the two
tracks cross, even if they are siever exactly coincident. Specifically, for
1<ijS N let

| 1 . ifj=n

Ali,j,m,nt) = {1 ifimnandj=m | (7
‘ otperwise 0 '

Figure 7 shows a GAMS program (Br'ooke, K.endrick,' and Meeraus, 1988) to
solve a 10 cell CSEG Qith payoff (7) where the initial moves of searcher‘ and
. evader are from ceils 4 to 5 and 7 to 6, respectively. Figure 8 shows:the
associated output. The value of the CSEG is 1.2269 (scaled to 122.69 in Figure

8), to be compared with .8541 in the “standard” game where A(i,,j,m,n,t)

17
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simply indicates whether j = n. The prohibition of scoreless crossovers is
evidently a significant. change in the rules of the game. Note that the leading
edge of the searcher’s marginals (P) is now only 1 cell wide for 1 S t<6.

The revised game differs qualitatively in an'interesting way from the

standard game. Let on(T) and v'N(T) be the values of the star.dard and revised

~ games (so 910(10) = .8541 and ”'10 (10) =1.2269). on(T) is ultimately linear in T

with slope 1/N. For example zim('I') =1.2269 + (T-10)/10 for T 2 10. The
turnpike theorem of Eagle and Washburn makes this plausible; essentially
either side can guarantee a slope of 1/N by remaining stationary in a
randomly chosen cell. Stationarity has the same virtues in the revised game,
but there is no evidence that v'~ (T) is ultimately linear. For
T =(12, 14, 16, 18, 20), v'm(T) is (1.4486, 1.7109, 2.000, 2.1396, 2.3540). The
differences fluctuate about .2, but are never exactly equal to .2. It is possible,
of course, that T = 2'0‘is simply not large enough tn observe the onset of

linearity.
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